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GENERALIZED EXPONENTIAL SMOOTHING IN
PREDICTION OF HIERARCHICAL TIME SERIES

Daniel Kosiorowski1, Dominik Mielczarek2 Jerzy P. Rydlewski3
Małgorzata Snarska4

ABSTRACT

Shang and Hyndman (2016) proposed grouped functional time series forecasting
approach as a combination of individual forecasts using generalized least squares
regression. We modify their methodology using generalized exponential smoothing
technique for the most disaggregated series in order to obtain more robust predictor.
We show some properties of our proposals using simulations and real data related
to electricity demand prediction.
Key words: functional time series, hierarchical time series, forecast reconciliation,
depth for functional data.

1. Introduction

A problem of optimal reconciliation of forecasts of activities of economic agents
partitioned into certain groups and/or levels of hierarchy was considered in the eco-
nomic as well as econometric literature many times and is still present in a public
economic debate (see Kohn (1982), Weale (1988), Hyndman et al. (2011)). National
import/export or national added value balances are important examples here. Dis-
crepancies between forecasts at global and local (regional) level are usually thought
to be caused by divergent methodologies or different precision of measurements at
different hierarchy levels used. A reconciliation of the level and global forecasts is
very important issue for policy makers both from fiscal and monetary side. Current
fiscal policy is usually modified on tax and duties inflows forecasts basis to cre-
ate long term social welfare. These estimates must of course include demographic
forecasts in regions of a country as well. As for monetary policy decisions, where
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the important task is the inflation target and sustainable growth of economy, central
banks have to combine and aggregate in a reasonable way not inflation forecasts for
particular countries and/or regions, but also include various reporting from banks
and financial institutions. The issue is also very important from a particular com-
pany point of view in a context of product lines management, consumers portfolio
optimization and consumers segmentation. Let us look at the problem of demand
forecast reconciliation from an agent based economic perspective and think about
economy as resultant of choices and decisions made by individual actors. Suppose
now, that one reconsiders classical problem of demand curve forecasting. In the
classical framework the problem reduces to an appropriate aggregation of various
economic utility measures of agents taking part in a certain market. By aggregate
measure economists usually understand a summary measure describing the whole
market or economy. When constructing such measures one is usually faced by the
difficulty of reconciling less aggregated measures (i.e., behavior of individual eco-
nomic agent) into a more coarse-grained one being still relative to less aggregated
counterparts. Classically one assumes that law of one price, law of demand and
supply, no arbitrage or general equilibrium conditions hold. That is why economists
usually include abstract concepts like composite good or representative agent, com-
mon utility functions. Individual behavior of economic quantity is then assumed to
change proportionately to the predefined composite index. The aggregate demand
curve is usually then estimated as a simple sum of individual demand curves orig-
inating from homogeneous utility curves. Standard approach to economic analysis
imply the so called representative agent, i.e. an agent that acts rationally maxi-
mizing his individual utility curve. Classical macroeconomic theoretical analysis
assumes equality of individual utilities. Since all agents are the same, economy is
now viewed as a simple sum of decision of individuals and individual forecasts of
future economic states average themselves to aggregate forecasts. It is easy to no-
tice, that real economy is much more complicated. Agents certainly optimize their
utilities, but the utilities are rather heterogeneous and their decisions are strongly af-
fected by decisions of other individuals with whom their interact. Choices of agents
due to their emotions, mistakes etc. are random to certain degree. Classical eco-
nomic theory ignores these micro fluctuations. On the other hand side an empirical
evidence shows that behaviors of individual consumers, firms and households are
very unique and heterogeneous. Introduction of fluctuations and interactions be-
tween economic agents into a dynamic economic system results in large number of
combination of individual states even when economic agents are faced with binary
choice decisions (i.e. buy or not to buy a certain amount of particular good). In-
troduction of interactions may result in a changing partition of agents into clusters
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and or levels of hierarchy. A discrepancies between aggregates measuring the same
may appear due to the relocation of agents into new clusters and/or levels for exam-
ple. Many economic phenomena can be described by means of functions (i.a. utility
curves, demand curves, development paths). In recent years a very interesting in this
coontext statistical methodology for analyzing functional data has been developed
(see Bosq (2000), Ramsay et al.(2009), Horvath and Kokoszka (2012), Krzyśko et
al. (2013), Shang and Hyndman (2016)). Following the cited authors we consider
random curve X = {x(t), t ∈ [0,T ]}, where T is fixed, as a random element of the
separable Hilbert space L2([0,T ]) with the inner product < x,y >=

∫
x(t)y(t)dt.

The space is equipped with the Borel σ−algebra. Furthermore, in Bosq’s (2000)
monography it is proved that probability distributions do exist for functional pro-
cesses with values in Hilbert space. Functional time series (FTS) is a series of
functions indexed by time (e.g. see Fig. 1). Imagine now, that one observes eco-
nomic data at various granularity e.g. demand for electricity of a single household,
single city, state or region, utility curves for different groups of consumers. A hi-
erarchical functional time series is a series of functions grouped at specified levels
(household, town, region, whole country), i.e. see Fig. 1. At each level a forecast
can be made. A natural problem arises: how to use information obtained at different
levels to obtain a reconciliated prediction at all levels?

To understand the idea behind hierarchical functional forecasting better, revert
back to our motivational problem of forecasting changes in demand function. Tradi-
tionally the demand for every good or service is usually explained by its own price,
income and preferences of the buyers depending on economic conditions, the exis-
tence of close substitutes, and the quality of the good and service itself. Although
there is a vast economic literature on consumer choice theory and aggregate de-
mand, it still remains inconclusive on how to effectively model total demand, when
one assumes that each individual has its own value and utility functions, especially
when these functions vary in shape and time, individuals can interact with each
other and this also influences their individual demand functions. That is why we are
going to treat these functions as random allowing these functions to be monitored in
time. It is advantageous to look at random functions observed at regular time inter-
vals as functional time series (FTS) as well. Alternatively a functional time series
may be constructed by separating an almost continuous time interval into natural
consecutive partitions such as hours, days, weeks, months, years.
The problem of hierarchical time series prediction is solved with various ways.
Bottom-up method relies on forecasting each of the disaggregated series at the low-
est level of the hierarchy, and then using simple aggregation to obtain forecasts at
higher level of the hierarchy (see Kahn (1998)). Top-down method involves fore-
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Figure 1: Electricity demand in regions of Australia in 2016 – hierarchic functional
time series example.
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Figure 2: Corrected band depths of curves. Depth value varies from maximal (blue
color the deepest curve) to minimal (red color the most peripheral curve).



5

casting of aggregated series at the top level of the hierarchy, and then using disaggre-
gation to obtain forecasts at lower level of the hierarchy based on historical propor-
tions. Shang and Hyndman (2016), extending the method of Hyndman et al. (2011),
considered grouped functional time series forecasting as an optimal combination of
individual forecasts using generalized least squares regression with level forecasts
treated as regressors. In the context of HTS prediction a general problem arises:
which method of forecasting at particular level should be chosen (see Bosq (2000),
Besse et al. (2000), Hyndman and Ullah (2007), Hyndman and Shang (2009), Aue
et. al. (2015)? Shang and Hyndman (2016) proposed grouped functional time series
forecasting approach as a combination of individual forecasts obtained by means of
their smart predicting method in which functional time series is reduced to family of
one dimensional time series of principal component scores representing of original
functional series. As a result of conducted simulation studies we decided to modify
their methodology. Instead of using principal component scores forecast methods
we decided to propose a certain functional generalization of exponential smoothing
technique (see Hyndman et al.(2008) for a theoretical background of the exponen-
tial smoothing), i.e. we used moving local medians and moving local averagess for
the most disaggregated series in order to obtain more robust predictor than Shang
and Hyndman’ (2016) predictor. Main aim of the paper is to modify the Shang and
Hyndman (2016) predictor so that it could cope with functional outliers and/or it
would be elastic enough to adapt to changes in data generating mechanism. The re-
mainder of the paper is as follows: in the second section elements of depth concept
are sketched and in the third section our proposals are introduced. Fourth section
presents results of simulation as well as empirical studies of properties of our pro-
posals. The paper ends with conclusions, references and short appendix containing
R script illustrating forecasts calculation performed using our proposals.

2. Depths for functional data

For obtaining robust hierarchical FTS predictor we focused our attention on the
functional data depth concept (Nagy et al. (2016) and Nieto-Reyes and Battey
(2016)). Let X = {x1, ...,xn} be a sample of continuous curves defined on the com-
pact interval T . Let λ denote the Lebesgue measure and let a(i1, i2) = {t ∈ T :
xi2−xi1 ≥ 0}, where xi1 and xi2 are band delimiting objects. Let Li1,i2 =

λ (a(i1,i2))
λ (T ) . We

have chosen, in our opinion the best depth for considered functional data, namely the
corrected generalized band depth (cGBD, see López-Pintado and Jörnsten (2007)).
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The cGBD of a curve x with respect to the sample X is defined as

cGBD(x|X) =
2

n(n−1) ∑
1≤i1<i2≤n

λ (Ac(x;xi1 ,xi2))

λ (T )

where

Ac(x;xi1 ,xi2) = {t ∈ a(i1, i2) : xi1(t)≤ x(t)≤ xi2(t)}, if Li1,i2 ≥
1
2

or
Ac(x;xi1 ,xi2) = {t ∈ a(i2, i1) : xi2(t)≤ x(t)≤ xi1(t)}, if Li2,i1 >

1
2
.

Band depth is modified in order to consider only the proportion of the domain where
the delimiting curves define a contiguous region which has non–zero width. In
order to perform the construction we calculated the depth regions of order α for
considered cGBD, i.e. Rα(P) = {x : cGBD(x,P)≥ α}. α-central regions Rα(P) =
{x∈ L2([0,T ]) : D(x,P)≥ α} for any depth function D(x,P) may be defined, where
P denotes probability distribution. Various descriptive characteristics, like scatter,
skewness, kurtosis, may be expressed in terms of α-regions. These regions are
nested and inner regions contain less probability mass. Following Paindaveine and
Van Bever (2013), when defining local depth it will be more appropriate to index the
family {Rα(P)} by means of probability contents. Consequently, for any β ∈ (0,1]
we define the smallest depth region with P-probability equal or larger than β as

Rβ (P) =
⋂

α∈A(β )

Rα(P),

where A(β ) = {α ≥ 0 : P(Rα(P)) ≥ β}. The depth regions Rα(P) and Rβ (P)
provide only the deepest point neighborhood. However, we can replace P by its
symmetrized version Px =

1
2 PX + 1

2 P2x−X. For any depth function D(·,P) the corre-
sponding sample local depth function at the locality level β ∈ (0,1] is LDβ (x,P(n))=

D(x,Px
β (n)), where Pβ (n)

x denotes the empirical measure with those data points that
belong to Rβ

x (P(n)). Rβ
x (P(n)) is the smallest sample depth region that contains at

least a proportion β of the 2n random functions x1, ...,xn,2x− x1, ...,2x− xn. Depth
is always well defined – it is an affine invariant from original depth. For β = 1
we obtain global depth, while for β ' 0 we obtain extreme localization. As in the
population case, our sample local depth will require considering, for any x ∈ L2,
the symmetrized distribution Pn

x which is empirical distribution associated with
x1, ...,xn,2x−x1, ...,2x−xn. Sample properties of the local versions of depths result
from general findings presented in (see Zuo and Serfling, 2000). Implementations of
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local versions of several depths including projection depth, Student, simplicial, Lp

depth, regression depth and modified band depth that can be found in free R package
DepthProc (see Kosiorowski and Zawadzki, 2014). In order to choose the locality
parameter β we recommend using expert knowledge related to the number of com-
ponents or regimes in the considered data. Sample properties of the local versions of
depths result from general findings presented in Paindaveine and Van Bever (2013).
For other concepts of local depths see e.g. Sguera et al. (2016). Implementations
of local versions of several depths including projection depth, Student, simplicial,
Lp depth, regression depth and modified band depth can be found in free R package
DepthProc – see Kosiorowski and Zawadzki (2014). Fig. 2 presents local sample
cGBD for data presented on fig. 1 with β = 0.45 and representing electricity de-
mand curves in 2016 in regions of Australia. Depth values are represented by colors
varying from blue (the deepest curves) to red (the most peripheral curves)

3. Our proposals

We consider a sample of N functions XN={xi(t), t ∈ [0,T ]}. Let FDβ (y|XN) denote
sample functional depth of y(t) with locality parameter β , e.g. the functional depth
is equal to corrected generalized band depth: FD = cGBD. Sample β–local median
is defined as

MEDFDβ (XN) = argmax
i=1,...,N

FDβ (xi|XN).

Assume now, that we observe a data stream xi(t), i = 1,2, .... We put our proposals
forward.
Proposal 1: Moving median concept is employed and generalized exponential smooth-
ing takes the following form, where as a predictor for (n+1)th moment we take

x̂n+1(t) = MEDFDβ (Wn,k),

and Wn,k denotes a moving window of length k ending in a moment n, i.e.,
Wn,k = {xn−k+1(t), ...,xn(t)}. For sample of N functions XN={xi(t), t ∈ [0,T ]}, let
FDβ (y|XN) denote sample functional depth of y(t) with locality parameter β . Sam-
ple α–trimmed mean with locality parameter β is defined as

ave(α,β )(XN) = ave(xi : FDβ (xi|XN)< α),

where ave denotes sample average.

Proposal 2: In this setup a generalized exponential smoothing technique is used
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as well. As a predictor for (n+1)th moment we take

x̂n+1(t) = z ·ave(α1,β1)(Wn1,k1)+(1− z) ·ave(α1,β1)(Wn2,k2),

where Wn,k denotes a moving window of length k ending in a moment n , i.e., Wn,k =

{xn−k+1(t), ...,xn(t)}, z ∈ [0,1] is a forgetting parameter and n2 < n1. Thus we
consider a closer past represented by Wn1 and a further past represented by Wn2 .
Notice, that lengths of the moving windows k,k1,k2 used in Proposals 1 – 2 relate
to the analogous forgetting parameters α in the classical exponential smoothing.
Additionally, we have in our disposal a resolution parameter β at which we predict
a phenomenon.
Proposal 3: Hierarchical FTS predictor
Step 1: At any aggregation level we apply our Proposition 1 or Proposition 2 in order
to compute forecasts independently on every level. Hence, generalized exponential
smoothing takes the following form

x̂level
n+1 (t) = MEDFDβ (W level

n,k )

or
x̂level

n+1 (t) = z ·ave(α1,β1)(W level
n1,k1

)+(1− z) ·ave(α1,β1)(W level
n2,k2

).

Such approach allows us to accommodate expert knowledge and adjust forgetting
and resolution parameters to researcher’s requirements. For comparison purpose,
in Shang and Hyndman (2016) paper authors make predictions using functional
regression based on time constant functional principal components scores modeling
by means of one–dimensional time series method proposed in Hyndman and Shang
(2009).
Step 2 – In this step we consider a whole hierarchy structure of the phenomenon.
We made a level forecasts with Proposals 1 or 2. Smart reconciliation of forecasts
is conducted then and our reconciled predictor takes a form:

X̂n+1(t) = F(x̂leveli1
n+1 , ..., x̂

levelik
n+1 ),

where hierarchical structure is described by fixed hierarchy levels leveli1 , ..., levelik
and F is a Generalized Least Squares Estimator (see Shang and Hyndman, 2016).
We can write our model in the form

Rt = Stbt ,

where Rt is a vector of all series at all levels, bt is a vector of the most disaggregated



9

data and St is a time constant matrix that shows a relation between them. We propose
to do the base forecast:

R̂n+1 = Sn+1βn+1 + εn+1,

where R̂n+1 is a matrix of base forecast for all series at all levels, βn+1 =E[bn+1|R1, ...,Rn]

is the unknown mean of the forecast distribution of the most disaggregated series
and εn+1 is responsible for errors. We propose to use a generalized least square
method as in Shang and Hyndman (2016)

β̂n+1 =
(
ST

n+1W−1Sn+1
)−1

ST
n+1W−1R̂n+1

modified so that we use a robust estimator of the dispersion matrix W , i.e. instead of
diagonal matrix, which contains forecast variances of each series, we use a robust
measure of forecast dispersion taking into account dependency structure between
the level forecasts. Notice, that a dynamic updating of the dispersion matrix should
be considered in further studies.
If we consider a hierarchy as in above Fig. 2, our dispersion matrix takes a form:

W = diag{vtotal,vleveli1 ,vleveli2,vlevelir, ...,vleveliq}

where

vlevel =V
{∫ T

0

(
xlevel

nk − x̂level
n

)2
ds,k ∈ Klevel,n = 1, ...,365

}
where Klevel is a number of obs. at considered level in time n, n = 1, ...,nh. If and
where V is a robust measure of dispersion. We propose to use c ·MAD instead of
standard deviation or take into account dependency structure between level series
using well known minimum covariance determinant (MCD) or recently proposed
PCS robust matrix estimators of multivariate scatter (see Vakili and Schmitt (2014)).

4. Properties of our proposals

Thanks to kindness of prof. Han Lin Shang, who made his R script available for us
we calculated optimal combination of forecast predictor add we compared Shang
and Hyndman (2016) proposal with our Proposal 3.

We generated samples from SV, GARCH, Wiener, Brown bridge, FAR pro-
cesses and various mixtures of them. In the simulations we considered several lo-
cality parameters differing within the levels of hierarchy, moving window lengths.
We considered samples with and without functional outliers. The outliers were de-
fined with respect to the functional boxplot induced by the cGBD i. e. we replaced
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Figure 3: Simulated HTFS consisted
of FAR(1) processes
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Figure 4: HFTS prediction using our
proposal
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Figure 5: Simulated HTFS consisted
of two regime FTS processes
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Figure 6: HFTS prediction using our
proposal

1%,5%,10% of curves in the samples by means of arbitrary curves being outside
a band determined by the functional boxplot whiskers and compared medians and
medians of absolute deviations from the medians (MAD) of integrated forecasts er-
rors in these two situations. Fig. 3 presents simulated hierarchical functional time
series consisted of three functional autoregression models of order 1 FAR(1) with
gaussian kernels and sine–cosine errors design (see Didericksen et al. 2012). Fig. 4
presents corresponding level forecasts obtained by means of local moving median
calculated from 15-obs. windows and locality parameters equal to 0.45. Fig. 5
presents simulated hierarchical time series consisted of three processes being mix-
tures of two stochastic volatility processes (SV). Fig. 6 presents corresponding level
forecasts obtained by means of local moving median calculated from 15-obs. win-
dow and locality parameters equal to 0.45. We indicated an order of appearance of
observations using colors palette starting from yellow and ending on blue. In the
appendix we placed a simple script depending on DepthProc R package illustrating
a general idea of the performed simulations.

In order to check the statistical properties of our proposals we considered empir-
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ical data set related to electricity demand in the period from 1 to 31 January 2016 in
Australia. The data come from five regions of Australia, denoted with the following
symbols: nsw, q, sa, tas, vic. All the considered data was taken from Australian
Energy Market Operator https://www.aemo.com.au/. Fig. 7 presents 297 predicted
electricity demand curves obtained by means of our Proposal 3 using moving lo-
cal median (taken from our Proposal 1) to calculate level forecasts, window lengths
k = 10 observations and locality parameter equal to β = 0.2. Fig. 8 presents box-
plots of 297 integrated squared differences between observed and predicted demand
curves in each region and in the whole Australia. Above the boxplots one can find
medians of absolute deviations (MAD) for the corresponding 297 forecast error
measures. A performance of our proposal was compared with Shang and Hyndman
(2016) proposals with respect to sum of integrated squared forecast residuals and
with respect to the MAD of integrated squared forecast residuals. We considered
also a prediction by means of estimated FAR(1) process, but we did not obtain bet-
ter forecasts in comparison to Shang and Hyndman (2016) proposal. Our proposal
seems to be more robust to functional outliers than their proposal, however. It is
not surprising, as the authors made their forecasts basing on nonrobust generalized
least squares method. Admittedly, Shang and Hyndman (2016) claimed that their
proposal performed better in comparison to bottom-up approach basing on moving
medians, but notice, that they considered Fraiman and Muniz global depths only.
Moreover thanks to locality parameter adjusting our proposal is more appropriate
for detecting the change of regimes in HFTS setup.

4.1. Uncertainty evaluation

Series of functional principal component scores are considered as surrogates of orig-
inal functional time series (see Aue et al. 2015, Hyndman and Shang (2009)). Sev-
eral authors postulate using dynamic functional principal components approach in
order to take into account time changing dependency structure of described phe-
nomenon (Aue et al. 2015). Notice, that such modification may drastically increase
computational complexity of the HFTS procedure. In a context of uncertainty eval-
uation of our proposals we suggest considering Vinod and de Lacalle (2009) maxi-
mum entropy bootstrap for time series approach. Bootstrap methods for FTS were
studied among other by Hörmann and Kokoszka (2012), Shang (2016). Similarly
as in Shang and Hyndman (2016) we propose to use maximum entropy bootstrap
methodology to obtain confidence regions and to conduct statistical inference. The
meboot and DepthProc R packages give the appropriate computational support for
that aims.
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Figure 7: Predicted electricity demand in Australia in 2016
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5. Conclusions

Hierarchical functional time series methodology opens new areas of statistical as
well as economical research. E–economy provides a great deal of HFTS data. Our
proposal of HFTS predictor basing on local moving functional median performs
surprisingly well in comparison to a milestone proposal of Shang and Hyndman
(2016). Lengths of the moving windows used in our proposals 1 – 3 relate to the
forgetting parameters α’s in the classical exponential smoothing. Moreover, we
have in our disposal a resolution parameter β at which we predict a phenomenon.
When using the locality parameter in our proposal, we can take into account dif-
ferent sensitivity to details , i.e. e.g. number of different regimes of the considered
phenomena.
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Appendix

#Simple R script, example showing how to calculate base forecasts for three hierarchy levels
#using moving functional median implemented within the DepthProc R package.
require(DepthProc)
require(RColorBrewer)
require(zoo)
wrapMBD = function(x)depthMedian(x, depth1="MBD",method="Local",beta=0.45)
#Simple stochastic volatility process simulator
#Simple stochastic volatility process simulator #
SV <- function(n, gamma, fi, sigma, delta) {
epsilon <- rnorm(n)
eta <- rnorm(2*n, 0, delta)
h <- c()
h[1] <- rnorm(1)
for (t in 2:(2*n)) {
h[t] <- exp(gamma+fi*(h[t-1]-gamma)+sigma*eta[t]) }
Z <- sqrt(tail(h,n)) * epsilon
return(Z)
}
example <- SV(100, 0, 0.2, 0.5, 0.1)
plot(ts(example))
#functional time series simulator
m.data1<-function(n,a,b) {
M<-matrix(nrow=n,ncol=120)
for (i in 1:n) M[i,]<- a*SV(120,0,0.3,0.5,0.1)+b
M }
m.data.out1<-function(eps,m,n,a,b,c,d){
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H<-rbind(m.data1(m,a,b),m.data1(n,c,d))
ind=sample((m+n),eps)
H1=H[ind,]
H1 }
m <- matrix(c(1, 0, 1, 3, 2, 3, 2, 0), nrow = 2, ncol = 4) m[2,]=c(2,2,3,3) m[1,]=c(0,1,1,0)
#below three functional time series
M2A= m.data.out1(150,3000,7000,5,0,1,25)
M2B= m.data.out1(150,3000,7000,2,0,1,15)
M2C= m.data.out1(150,3000,7000,3,0,1,10)
matplot(t(M2A),type="l",col=topo.colors(151), xlab="time",main="Functional time series
with two regimes")
matplot(t(M2B),type="l",col=topo.colors(151), xlab="time",main="FTS with two regimes")
matplot(t(M2C),type="l",col=topo.colors(151), xlab="time"
,main="FTS with two regimes")
#below moving local medians applied to the above series, window lengths = 15 obs.,
#locality parameters betas = 0.45
result4A = rollapply(t(M2A),width = 15, wrapMBD, by.column = FALSE)
result4B = rollapply(t(M2B),width = 15,wrapMBD, by.column = FALSE)
result4C = rollapply(t(M2C),width = 15, wrapMBD, by.column = FALSE)
matplot(result4A,type="l",col=topo.colors(87), xlab="time",main="local 15-obs moving func-
tional median, beta=0.45")
matplot(result4B,type="l",col=topo.colors(87), xlab="time",main="local 15-obs moving func-
tional median, beta=0.45")
matplot(result4C,type="l",col=topo.colors(87), xlab="time",main="local 15-obs moving func-
tional median, beta=0.45")
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